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More on Path Integrals

Last time we derived an expression for the (imaginary time, T →−iT ) propagator

〈xT |e−ĤT |x0〉= lim
N→∞

Z
DxN e−S({xi}N), DxN =

N−1

∏
i=1

dxi

√
m

2πa
,

S= a
N−1

∑
i=0

[
1
2m

(
xi+1−xi

a

)2
+V(xi)

]
.

The left-hand side obeys a composition law when tacking two paths together:

〈xT ′+T |e
−Ĥ(T ′+T)|x0〉=

Z
dxT〈xT ′+T |e

−ĤT ′|xT〉〈xT |e−ĤT |x0〉

So does the right-hand side:Z
DxN′+N e−S({xi}N′+N) =

Z
dxN

Z
DxN′ e−S({xi}N′)

Z
DxN e−S({xi}N),

even without taking the limit of infinite N, N′.
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Furthermore, an operator Q̂ = Q(x̂) =
R

dx|x〉Q(x)〈x|, acting at time t, 0 < t < T,

〈xT |e−Ĥ(T−t)Q(x̂)e−Ĥt|x0〉=
Z

Dx Q(xt)e−S({xi})

and similarly for several operators inserted at various different times.

In field theories, we do not have 1 degree of freedom. We have many.

It is impractical to study the dependence of the wave function on all of them.

So let us set xT = x0 and integrates over x0, yielding the “partition function”

Z =
Z

Dx e−S, Dx =
N−1

∏
i=0

dxi,

now with N integrations.
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The parallel with statistical mechanics can be pursued further by introducing

〈Q(xt)〉=
1
Z

Z
Dx Q(xt)e−S({xi})

〈Q1(xt1)Q2(xt2)〉=
1
Z

Z
Dx Q1(xt1)Q2(xt2)e−S({xi})

〈Q1(xt1)Q2(xt2)〉c = 〈Q1(xt1)Q2(xt2)〉−〈Q1(xt1)〉〈Q2(xt2)〉

The clash of the notation 〈•〉 with Dirac notation is unfortunate, but conventional.

For large T Proofs as exercises.

Z
largeT→ e−E0T

〈Q(xt)〉
largeT→ 〈0|Q(x̂)|0〉

gives you the vacuum energy E0 and vacuum expectation value (vev).

Not miraculous. Recall scattering theory, with propagators out to T(1− i0+).
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For large T (and xt1−xt2 = ja) Proof as exercise.

〈Q1(xt1)Q2(xt2)〉c
largeT→ ∑

n6=0
〈0|Q1(x̂)|n〉〈n|Q2(x̂)|0〉e−(En−E0) ja

+ ∑
n6=0

〈0|Q2(x̂)|n〉〈n|Q1(x̂)|0〉e−(En−E0)(T− ja),

gives you the excited-state energies E0 and vacuum → 1-particle matrix elements.

For large ja and/or T− ja Proof as exercise.

〈Q1(xt1)Q2(xt2)〉c
largeT→ 〈0|Q1(x̂)|1〉〈1|Q2(x̂)|0〉e−(E1−E0) ja

+ 〈0|Q2(x̂)|1〉〈1|Q1(x̂)|0〉e−(E1−E0)(T− ja),

thus isolating properties of the first excited-state |1〉.

If (by symmetry or clever design) Qi(x̂)|1〉= 0, then higher excited states |2〉 · · ·.

In field theory, these energies are nothing but masses of particles.
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Monte Carlo Integration

Choose a random configuration of the xi, which we can denote {xi}(c), and we can
generate C such configurations. Then

Z =
Z

Dxe−S= lim
C→∞

( m
2πa

)N/2C−1

∑
c=0

exp
[
−S

(
{xi}(c)

)]
,

Z
Dx f({xi})e−S= lim

C→∞

( m
2πa

)N/2C−1

∑
c=0

f ({xi}(c))exp
[
−S

(
{xi}(c)

)]
.

An estimate of the left-hand side is achieved for C finite.

From now on we use finite C, and omit the normalization factor (m/2πa)N/2, which
drops out of correlation functions.

This method is hopeless for large N. S is extensive, many configurations have S∼N;
they are a waste of time.
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The remedy is called importance sampling.

Don’t choose all configurations with equal weight, choose them with weight e−S.

This is possible because S is real and bounded below. Hence imaginary time!

Then

1
Z

Z
Dx f({xi})e−S≈ 1

C

C−1

∑
c=0

f ({xi}(c)).

converging to be exact as C→ ∞.

Quantum theory has been reduced to the design of random number generators,

for many variables, with distribution e−S.
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A Simple Method

Perhaps the simplest method to generate the

desired distribution is the Metropolis method.

Requires only e−S≥ 0.

Visit each xi in turn, and follow the flow chart.

rand() ∈ [0,1)

Choose r to accept ∼ 40–50%of updates.

For more complicate (sets of) degrees of free-

dom only the proposed update must change.

May also update xi several times, before pro-

ceeding to i +1.

Start Metropolis

Propose new value for x
y = x + r*(2*rand() - 1);

S(y) > S(x)?

exp(S(x) - S(y)) < rand()?

YES

return x

YES

return yNO

return yNO
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Necessary vs. Sufficient for Monte Carlo

The aim of any algorithm is to generate a transition rule T({x} → {y}) so that the
probability density is (eventually) P({x}) ∝ e−S({x}).

Start with an initial distribution P({x},0). The transition rule T({x} → {y}) changes
the distribution from P({x},c) to T({x}→ {y}) independent of c.

P({x},c+1) = P({x},c)−
Z

DyP({x},c)T({x}→ {y})

+
Z

DyP({y},c)T({y}→ {x})

The steady state (if it exists) has P({x},c) independent of c.Z
DyP({x})T({x}→ {y}) =

Z
DyP({y})T({y}→ {x}) necessary

P({x})T({x}→ {y}) = P({y})T({y}→ {x}) sufficient

The last (unintegrated) condition is called detailed balance. It is easier to satisfy.
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Metropolis and Detailed Balance

We now check the Metropolis satisfies detailed balance, re-written

T({x}→ {y})
T({y}→ {x})

!=
P({y})
P({x})

= e−[S({y})−S({x})] = e−∆S

Three cases:

S({y}) = S({x})
always accept

both Ts = 1

e−∆S= 1

S({y}) > S({x})
0 < e−∆S< 1

“accept if R≤ e−∆S”

accepts fraction e−∆S

T({x}→ {y}) = e−∆S

T({y}→ {x}) = 1

S({y}) < S({x})
T({x}→ {y}) = 1

T({y}→ {x}) = e∆S

In all three cases, Metropolis satisfies detailed balance.
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Statistical Uncertainties

With Monte Carlo integration, there are statistical errors that fall as C−1.

Let the average in the finite ensemble be written

f ({xi}) :=
1
C

C−1

∑
c=0

f ({xi}(c)).

so f ({xi}) estimates 〈 f ({xi})〉.

The central limit theorem says that f ({xi}) fluctuates around 〈 f ({xi})〉 with variance

σ2( f ) =
1

C−1

[
f 2− f 2

]
.

(Think of repeating a Monte Carlo of C configurations many times, and drawing the
histogram of f .)
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Indeed, statistical fluctuations are correlated

σ2(
fi, f j

)
=

1
C−1

[
fi f j − fi f j

]
.

For example, ft = Q(xt)Q(x0) and ft+u.

In field theory, we can gain some intuition about the fluctations, because

fi f j − fi f j ≈ 〈 fi f j〉−〈 fi〉〈 f j〉.

In practice, similar quantities (like successive times of a correlation function) fluctuate

together.

Statistical errors often cancel somewhat when forming ratios and differences.
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Statistical Errors for Masses, etc.

Usually we are interested in energies or quantum-mechanical matrix elements.

For example, the energy difference can be extracted from

meff(t) =− ln
〈Q1(xt+1)Q2(x0)〉c
〈Q1(xt)Q2(x0)〉c

Independent of t ⇔ one state dominates.

Logarithm does not commute with 〈•〉.

To estimate the statistical error on meff, we really need many ensembles.

In the bootstrap method, new pseudo-ensembles are generated from the original, by
drawing configurations at random, allowing repeats.

Bootstrap can be wrapped around an arbitrarily complicated analysis.
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Scalar Field Theory on a Lattice

In quantum mechanics the action in the path integral is

S= a
N−1

∑
i=0

[
1
2m

(
xi+1−xi

a

)2
+V(xi)

]
.

where the velocity dx/dt is replace by a discrete approximation.

The simplest scalar field theory simply repeats this replacement for all d directions,

S= ad∑
n

[
d

∑
µ=1

1
2a−2

(
φn+e(µ)−φn

)2
+V(φn)

]
.

where e(µ) is a unit vector in the µ direction, and n∈ Zd.

This is a square, cubic, or hypercubic lattice for d = 2,3,4.
Dimensionful spacetime labels x = na.
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What does the lattice do to the field theory?

In the spatial directions, L = Na be the physical size of the box. Then

continuum a→ 0 continuum a→ 0
infinite volume L→ ∞ ⇐= finite volume (L finite)

Nd.o.f. is uncountable infinite Nd.o.f. is infinite, but countable

⇑

lattice (a non-zero) lattice (a non-zero)
infinite volume L→ ∞ finite volume (L finite)

Nd.o.f. is infinite, but countable Nd.o.f. is finite

No divergences if Nd.o.f. is finite, i.e., if a non-zero and L finite.

Ultraviolet and infrared divergences do not appear in combinations of
physical quantities. Instead g2

0 = g2
0(a).
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Free Lattice Field Theory

The kinetic terms may be re-written

∑
n

(
φn+e(µ)−φn

)2
= ∑

n
2φ2

n−2φnφn+e(µ) = ∑
n

2φ2
n−φn

(
φn+e(µ) +φn−e(µ)

)
analogous to integrating by parts (∂µφ)2→−φ∂2

µφ.

So we will take the lattice Lagrangian (or Lagrange density) to be

Ln = a−21
2∑

µ
φn(tµ+ t−µ−2)φn−V(φn), S=−ad∑

n
Ln, t±µφn = φn±e(µ).

For free fields V(φ) = 1
2m2

0φ2. In momentum space, the propagator is

G(p)−1 = p̂2+m2
0

where p̂2a2 = ∑µ
1
2(eipµa+e−ipµa−2) = ∑µ[2sin(1

2pµa)]2 = ∑µ p̂2
µa2.
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Fourier transform from p4 back to t:

G(t,~p) =
Z

dp4
2π

eip4t

p̂2
4+ ~̂p

2
+m2

0

=
Z

dp4
2π

a2eip4t

2+a2(~̂p
2
+m2

0)−2cosp4a

=
I

dz
2πi

az|t|/a

2zcoshEa−2(z2+1)
, z= esign(t)ip4a

=
ae−E|t|

2sinhEa
expected

e−|t|(~p
2+m2)1/2

2E

where coshEa= 1+ 1
2a2(~̂p

2
+m2

0).

Here we have defined the energy through the fall-off of the correlation function.

〈φ(t,~p)φ(0,~q)〉= (2π)d−1δ(~p−~q)G(t,~p)

We see that discretization effects distort the energy.
They also change the normalization so it is not quite canonical.
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Lattice Gauge Theory

Now suppose we have a complex (i.e., charged scalar field).

Suppose it transforms under some gauge group as

φ(y)→ g(y)φ(y), φ†(x)→ φ†(x)g†(x), g† = g−1.

In the Lagrangian for scalar fields, the local terms are automatically gauge invariant if
the potential is a function φ†φ (as it would be).

Not so for the kinetic terms, but we saw in the previous lecture that combinations

φ†(x)U(x,y)φ(y),

are gauge invariant.

We can make φ†(x)t±µφ(x) gauge invariant simply by inserting the parallel trans-
porter along the link: t±µφ(x)→ T±µφ(x) = U(x,x±ae(µ))φ(x±ae(µ)).
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Lattice Gauge Fields

This means that the basic variables for lattice gauge fields are

Uµ(x) = U(x,x+ae(µ)), U(x,x−ae(µ)) = U†(x−ae(µ),x) = U†
µ(x−ae(µ))

They take values in a Lie group. Aµ takes values in the Lie algebra.

So integrating over all Uµ(x) sums over all possible lattice gauge fields.

What is the measure? We wantZ
dU f(U) =

Z
dU f(gU) =

Z
dU f(Ug−1)⇒

Z
dU U = 0Z

dU1= 1⇒
Z

dU Ui jU
∗
lk =

1
N

δil δk j for SU(N)

Mathematicians call this Haar measure.
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Now we need an action for lattice gauge fields. The simplest one is obtained by

analogy with the simplest action for scalar fields. Now the translations are

TµUν(x) =Uµ(x)Uν(x+ae(µ))U†
µ(x+ae(ν))

T−µUν(x) =U†
µ(x−ae(µ))Uν(x−ae(µ))Uµ(x−ae(µ) +ae(ν))

So,

−∑
x,µ

tr[U†
ν (x)(Tµ+T−µ−2)Uν(x)] = 2∑

x,µ
Pµν

Pµν = Retr[1−Uµ(x)Uν(x+ae(µ))U†
µ(x+ae(ν))U†

ν (x)].

and

S=
β

2N ∑
x,µ,ν

Pµν(x) the Wilson (plaquette) action

Exercise: show that the plaquette action reduces to the Yang-Mills action when a→ 0.
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